LlamaIndex

Introduction

LlamaIndex (formerly GPT Index) is a data framework designed to help you build LLM applications over your private data. It provides a simple interface to connect your data with Large Language Models (LLMs), enabling you to:

Features

Installation

pip install llama-index-core llama-index-llms-openai

Basic Usage

1. Setting up

import os
from llama_index.core import VectorStoreIndex, SimpleDirectoryReader
from llama_index.core import Settings
from llama_index.llms.openai import OpenAI

# Set your OpenAI API key
os.environ['OPENAI_API_KEY'] = 'your-api-key'

# Configure settings
Settings.llm = OpenAI(model="gpt-3.5-turbo")

2. Loading Documents

# Load documents from a directory
documents = SimpleDirectoryReader('data').load_data()

# Create an index
index = VectorStoreIndex.from_documents(documents)

3. Querying

# Create query engine
query_engine = index.as_query_engine()

# Ask questions
response = query_engine.query("What information do you have about X?")
print(response)

Key Concepts

1. Data Connectors

LlamaIndex provides various data connectors to load your data:

2. Data Indexes

Different types of indexes available:

3. Query Types

Advanced Features

Best Practices

  1. Choose appropriate index structures based on your use case
  2. Implement proper error handling
  3. Monitor token usage
  4. Use caching when possible
  5. Consider chunking strategies for large documents

Resources

What Else?
inflearn react api server -50% 할인쿠폰: 15108-f2af1e086101 buy me a coffee